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Abstract—The oil and gas industry requires standardized 
testing of tubular products. Testing to the edges of a specified 
test envelope or yield criterion is performed in order to 
qualify designs. The most commonly used yield criterion for 
ductile steel tubular products is the von Mises-Hencky theory 
which provides a yield criterion based on a triaxial stress 
state. The yield criterion is used with real time data to model 
and predict possible impending yield of a test sample and 
provide notification to a test operator. For a significant 
portion of the standardized testing, the form of the yield 
criterion is an ellipse based on a triaxial stress state created by 
axial, hoop and radial stresses. The criterion is converted to 
axial loads and pressures and divided into two independent 
biaxial stress states that are recombined to provide the 
resultant yield surface or test envelope. The yield equations 
can be transformed such that a radial stepping technique can 
be used to produce a calculated yield surface that has the 
requisite resolution to define the areas of rapid curvature 
change. The algorithm presented provides sufficient resolution 
for real time comparison of loads to the yield surface or test 
envelope to predict possible yielding before potentially 
damaging expensive test samples. 

I. INTRODUCTION 

The oil and gas industry is continuously pushing the 
limits of tubular product performance with new and 
improved connection designs. The industry requires testing 
of these products to API/ISO standards [1,2]. Testing to the 
edges of a specified yield criterion or test envelope is 
performed in order to qualify designs. This testing becomes 
even more important as the industry pushes the limits in 
order to reach deeper hydrocarbon reserves [3].  
 

The most commonly used combined stress yield criterion 
for ductile steel tubular products in the oil and gas industry 
is the Maximum Distortion Energy Theorem, also referred 
to as the von Mises-Hencky theory [4]. It provides a ductile 
yield criterion based on a triaxial stress state. The yield 
criterion can be used with real time data to model and 
predict possible impending yield of a test sample and 
provide a test operator with a notification. This allows the 
test operator or load frame itself to perform corrective 
action to protect the sample. 

A significant portion of the standardized testing is done 
with axial, pressure and thermal loading. In this case the 
form of the yield criterion can be reduced to an ellipse 
based on a triaxial stress state resulting from axial loads, 
internal pressures and external pressures. Using the 
definition of uniaxial stress along with Lamé equations 
[5,6,7] for radial and hoop stresses due to internal and 
external pressures, the von Mises criterion is converted to 
axial loads and pressures [2,7]. Once put into this form, the 
axial load, internal and external pressures cannot be 
explicitly separated so the equation set is divided into two 
independent biaxial stress states and two ellipse halves are 
generated [2]. The internal pressure and axial loads 
equation set is only valid for the internal pressure half of 
the calculated ellipse. Likewise, the external pressure and 
axial load equation set is only valid for the external 
pressure portion of the calculated ellipse. The two ellipse 
halves are then recombined to provide the resultant yield 
surface [2] as shown in Fig. 1. 

 

 
Figure 1. Ellipse Generation Process 

A.   Abbreviations �:  inner radius �:  outer radius ��:  internal pressure   ��:  external pressure 



 

�:  radial calculation location  �:  load �:  joint efficiency 	:  offset angle 
:  radial sweep angle ��:  principal stress �
:  yield strength ���, �, �, �, �, �:  constants ��:  vector to calcuation points 

II. ELLIPSE DEFINITION 

Cartesian stepping can be used to generate the yield 
ellipse but it leads to an unnecessary number of calculations 
required to adequately represent the areas of rapid curvature 
needed for real time data checking. This problem is 
illustrated by the square symbols along the curve in Fig. 2. 
As the increment of load ∆��, or pressure ∆��, increases 
toward the outer edge of the ellipse it can be seen that some 
portion of the curve will be approximated by a straight line. 
The area of curvature after the last step for incrementing 
load ∆�� is highlighted in Fig. 2. It requires a significant 
reduction in step size to represent the curvature. For the 
purposes of real time data checking, the resulting yield 
surface would be too conservative and alarming would 
occur during normal test operations. 
 

 
Figure 2. Cartesian and Radial Calculation Stepping 

The ellipse can be transformed so that a radial stepping 
technique can be used. The algorithm produces the yield 
surface with the requisite resolution to define the areas of 
rapid curvature change with substantially less calculation 
overhead. Fig. 2 illustrates the radial sweep points ∆��as 
circle symbols along the curve. Because of the resolution 
improvement, interpolations can be made between 
calculation data points to determine if a load ∆� and 
pressure ∆� window around the real time data is completely 
inside of the test envelope, it overlaps the envelope or it is 

completely outside of the test envelope. This allows for real 
time comparison of loads and pressures to the yield 
criterion to predict an impending sample yield before 
potentially damaging expensive test samples. 

The general form of the von Mises yield criterion for a 
triaxial stress state is shown in (1). 
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For thick wall cylinders, the principal stresses can be 

shown to be represented by the Lamé hoop and radial stress 
equations [2,6] and axial stress. In the absence of bending 
or torsion, yielding will always occur at the inner radius of 
the cylinder [2,8]. Therefore, the calculations can be 
reduced to one radial location on the sample. The Lamé 
equations can then be refactored and simplified in terms of 
constants to be used to generate the von Mises ellipse. 

A.   Internal Pressure and Axial Loading 

The Lamé thick wall cylinder equations for the tangential 
stress is represented, refactored and simplified in terms of 
the internal pressure �� while the external pressure �( is 
held constant as shown in (2a-2c). 
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The same process can be done for the radial stress. The 
Lamé thick wall cylinder equation for the radial stress is 
represented, refactored and simplified in terms of the 
internal pressure �� while the external pressure �( is held 
constant as shown in (3a-3c). 
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The axial stress due to tension or compression is 
independent of pressure and represented and simplified in 
(4a-4b). 
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B.   External Pressure and Axial Loading 
The Lamé thick wall cylinder equations for the tangential 

stress at any radial location is represented, refactored and 
simplified in terms of the external pressure �( while the 
internal pressure �� is held constant as shown in (5a-5c). 
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The same process can be done for the radial stress. The 
Lamé thick wall cylinder equation for the radial stress is 
represented, refactored and simplified in terms of the 
external pressure �( while the internal pressure �� is held 
constant as shown in (6a-6c). 
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The axial stresses due to tension or compression are 
represented and simplified the same as shown in (4a-4b). 

C.   Ellipse Definition in Conic Form 

Substituting the above appropriate internal pressure and 
axial load equation set (2c,3c,4b) into the von Mises 
equation (1) using gives (7a-7b) 
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In order to change the form into one of a general 
equation for conic sections [5], (7) can be refactored into 
the form of (8) 
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The yield ellipse is now defined by the general equation 

for conic sections [9] shown as (9a-9b) 
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where ;�< is defined as 

 ;�<  ;<� (9b) 
 

III.  ELLIPSE TRANSFORMATION 

The ellipse is generated as shown in Fig. 3 by calculating 
the major axis ,, the minor axis - and radially calculating 
the points based on the desired angular resolution of the 
sweep angle =. 

 
Figure 3. Ellipse u-v to x-y transformation 

Fig. 3 also illustrates the transformation from the local  
u-v ellipse coordinate system to the global x-y coordinate 
system. Constants composed of the invariants [9] required 
for the transformation are defined in equations (10a-10c) 
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The ellipse can then be generated with respect to the u-v 

axes and appropriately rotated and translated. The 
equations of the ellipse in terms of the u-v axes is given as 
(11a-11c) 
 
 A##B� & A��C� & A''  0 (11a) 
 
where A##and A�� are defined as 
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and A'' is defined as 
 
 A''  >'>� (11c) 

 
Magnitudes of the principal semi-axes and the direction 

to the principal axis can be calculated using (12a-12c) 
where the major axis , is defined as 

 
 ,  E$A''A##  

(12a) 

 
and the minor axis - is defined as 
 
 -  E$A''A��  

(12b) 

 
and principle axis rotation angle � is defined as 
 
 �  12 I,JK# F 2;#�;## $ ;��G (12c) 

 
where � is limited to 
 
 � ≤ 82 (12d) 

 

 The coordinates of the center point of the ellipse are 
given using (13a-13b) where the x axis offset MN is defined 
as 

 

 MN  ;#�;�' $ ;#';��>�  (13a) 

 
And the y axis offset ON is defined as 
 
 ON  ;#�;#'	 $ ;##;�'>�  (13b) 

 
The parametric equation coordinates to a point in the u-v 

plane are given using (14a-14b) 
 

 PB C	Q  	P, RST = - TUJ =Q (14a) 
 

where the sweep angle = varies as 
 
 0 ≤ = ≤ 28 (14b) 
 

The final transformation into the x-y coordinate system 
is given using (15a-15b) 

 
 PM∗ O∗	Q  	PB CQ W RST � TUJ �$ TUJ � RST �X (15a) 

 
The final transformed array YM O	Z is defined as 
 
 PM O	Q  	PMN ON	Q & PM∗ O∗Q (15b) 

 
The process is done to generate an ellipse for the internal 

pressure Lamé equation set with axial loads and to generate 
an ellipse for the external pressure Lamé equation set with 
axial loads. The calculations are only performed for the 
pressures corresponding to internal pressure or external 
pressure with the respective equation set.  The two ellipse 
halves are combined to represent the resultant yield ellipse 
or test envelope. 

IV.  REAL TIME DATA VERIFICATION 

The radial sweep ellipse generation technique provides a 
resolution that can be used for interpolation with real time 
data. With the linear stepping illustrated in Fig. 2, the 
location of maximum curvature can miss significant 
portions of the yield envelope for reasonable calculation 
step sizes ∆��. With a radial sweep ∆�� the calculated 
ellipse points can be used to interpolate with a better 
calculation resolution to determine if the real time data 
checking window is completely inside, overlapping or 
completely outside the test envelope. In practice, an 
operating window around the real time data point is verified 
as shown in Fig. 4. 

Software precalculates the yield surface.  For each real 
time load and pressure data point it checks the four corner 
points of the incremental load ∆� and pressure ∆[ window. 
The alarming criterion is based on a comparison of the 
magnitude of each given window corner point vector and 
the magnitude of the collinear vector to the crossing point 
of the segment created between the two adjacent radial data 
points, points �1 and �2, as illustrated in Fig. 4 by the 
diamond symbol. If during testing, the real time data 
alarming window overlaps the yield surface the test 
operator is given a warning. If the entire set of real time 
data alarming window points are outside of the yield 
surface, the test operator is presented an alarm state.  This 



 

provides actionable real time information that is difficult to 
discern from only the load and pressure measurements. 

 

 
Figure 4. Real Time Data Checking 

V. PRACTICAL IMPLEMENTATION 

The practical implementation in software involves 
precalculating the yield ellipse. The software can 
precalculate the yield ellipse and retain the coordinates, the 
vector magnitude and the direction angle to the vector for 
each yield ellipse calculation point.   

A series of quick geometry manipulations can be made 
based on the real time data checking window in 
combination with the precalculated angles and magnitudes 
to the ellipse calculation points.  With the ellipse points 
calculated at a sufficient resolution, the location of the 
crossing of the projected vector C\]]]̂  on the ellipse can 
approximated using the assumption of a straight line 
segment T#� between the two adjacent data points �1 and �2. 
 

 

Figure 5 – Check vector magnitude 

The magnitude of the segment bounded by the two 
vectors C#]]]]̂  and  C�]]]]̂  is given by (16) 

 
 T#�  _C#� & C�� $ 2C#C� cos!�� $ �#% (16) 

   

The interior angle between the segment , and the vector C#]]]]̂  is shown as c in Fig. 5 and is calculated in (17) 
 

 c  cosK# dC#� & ,� $ C��2C#, e 
(17) 

 
The included angle ; is defined using the precalculated 

angle �# to the �1 vector C#]]]]̂  and to the respective collinear 
vector defined by the incremental load ∆� and pressure ∆[ 
window data point as shown in Fig. 5. 

 
 ;  8 $ c $ !�\ $ �#% (18) 

 
The magnitude of the yield ellipse approximation vector C\]]]̂  can now be calculated as (19) 

 
 C\  C# sin csin ;  

(19) 

 
Once the magnitude of the yield ellipse approximation 

vector C\]]]̂  is calculated, it can be compared magnitude of the 
vector to the associated bounding check point of the real 
time data checking window. 

VI.  ALGORITHM SUMMARY  

The general procedure to implement the algorithm in 
software involves a series of precalculated steps and a 
series of iterative steps: 

A. Precalulated Steps (1-5) 

1. Obtain the sample parameters; inner radius ,, 
outer radius - and yield strength �� 

2. Calculate the internal pressure portion of the 
von Mises yield ellipse using the equation sets 
outlined in the section II.A Internal Pressure 
and Axial Loading 

3. Calculate the external pressure portion of the 
von Mises yield ellipse using the equation sets 
outlined in the section II.B External Pressure 
and Axial Loading 

4. Invert the external pressure calculated points 
and combine them with the internal pressure 
calculated points to create a single yield surface. 

5. Calculate the magnitude and angle to each 
ellipse point for the combined curve and retain 
the values 

B. Iterative Steps (6-14) 

6. Obtain the real time data point and determine 
the four bounding checking window points. 

7. For each of the check points, perform a radial 
sweep through the ellipse and find the upper 
and lower bounding angles for the angle to the 
check point vector. 



 

8. Calculate the magnitude of the vector to the real 
time data window check point. 

9. Calculate the magnitude of the collinear vector 
to the ellipse crossing for the real time window 
check point approximated by the point crossing 
the linear segment between the two bounding 
vectors as shown in Fig. 5 

10. Compare the magnitude of each of the real time 
data check point vectors to the magnitude of 
each of the corresponding collinear vector 
ellipse crossing approximation. 

11. Indicate the real time data is within the bounds 
of the ellipse if the magnitude of the check 
point vector is less than the magnitude of the 
corresponding collinear vector ellipse crossing 
approximation for all of the window check 
points. 

12. Indicate that the real time data is overlapping 
the boundary of the ellipse if the magnitude of 
at least one check point vector is less than the 
magnitude of the corresponding collinear vector 
ellipse crossing approximation and if the 
magnitude of at least one check point vector is 
greater than the magnitude of the corresponding 
collinear vector ellipse crossing approximation. 

13. Indicate that the real time data has exceeded the 
calculated yield ellipse if the magnitude of the 
check point vector is greater than the magnitude 
of the corresponding collinear vector ellipse 
crossing approximation for all of the window 
check points. 

14. Repeat the process for updated real time data 
points. 

VII.  CONCLUSIONS 

Transforming the resultant internal pressure and axial 
load or external pressure and axial load von Mises yield 
ellipses into a general conic equation so that a radial sweep 
algorithm can be used to generate the ellipses provides an 
efficient way of using the von Mises yield criterion for real 
time data test envelope verification. This process has been 
implemented into software that constantly monitors tests 
and notifies test operators when the real time data 
approaches or exceeds the yield ellipse.   

The algorithm can be implemented in embedded 
software to act as an independent intelligent watchdog.  It 
can be used for an automated corrective action request to 
the load control software or as an automated shutdown of 
the test system. Another implementation, at the expense of 
more calculation overhead, would be to calculate the 
magnitude of the verification vector C\]]]̂  using the yield 
ellipse itself as opposed to using a geometric approximation 
check. This was deemed not necessary for the intended 
purposes of the present implementation. 
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