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Abstract—The oil and gas industry requires standardized
testing of tubular products. Testing to the edges of a specified
test envelope or yield criterion is performed in order to
qualify designs. The most commonly used yield criterion for
ductile stedl tubular products is the von Mises-Hencky theory
which provides a yield criterion based on a triaxial stress
state. The yield criterion is used with real time data to model
and predict possible impending yield of a test sample and
provide notification to a test operator. For a significant
portion of the standardized testing, the form of the yield
criterion isan elipse based on atriaxial stress state created by
axial, hoop and radial stresses. The criterion is converted to
axial loads and pressures and divided into two independent
biaxial stress states that are recombined to provide the
resultant yield surface or test envelope. The yield equations
can be transformed such that a radial stepping technique can
be used to produce a calculated yield surface that has the
requisite resolution to define the areas of rapid curvature
change. The algorithm presented provides sufficient resolution
for real time comparison of loads to the yield surface or test
envelope to predict possible yielding before potentially
damaging expensive test samples.

I. INTRODUCTION

The oil and gas industry is continuously pushing th
limits of tubular product performance with new and
improved connection designs. The industry requiesting
of these products to API/ISO standards [1,2]. hesto the
edges of a specified yield criterion or test enpelds
performed in order to qualify designs. This testiegomes
even more important as the industry pushes thedlimi

order to reach deeper hydrocarbon reserves [3].

The most commonly used combined stress yield @yiter
for ductile steel tubular products in the oil arabs gndustry

A significant portion of the standardized testisgdone
with axial, pressure and thermal loading. In thése the
form of the yield criterion can be reduced to alipsé
based on a triaxial stress state resulting fronaldriads,
internal pressures and external pressures. Usirg th
definition of uniaxial stress along with Lamé edqoas
[5,6,7] for radial and hoop stresses due to intearal
external pressures, the von Mises criterion is eded to
axial loads and pressures [2,7]. Once put intofthis, the
axial load, internal and external pressures canbet
explicitly separated so the equation set is divided two
independent biaxial stress states and two elligbech are
generated [2]. The internal pressure and axial doad
equation set is only valid for the internal presshalf of
the calculated ellipse. Likewise, the external pues and
axial load equation set is only valid for the ertdr
pressure portion of the calculated ellipse. The elNipse
halves are then recombined to provide the resulait
surface [2] as shown in Fig. 1.
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to as the von Mises-Hencky theory [4]. It provideductile
yield criterion based on a triaxial stress stathe yield A,
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Figure 1. Ellipse Generation Process

Abbreviations

a: inner radius
b: outer radius
p;: internal pressure
Po: external pressure



r: radial calculation location completely outside of the test envelope. This adldar real

T: load time comparison of loads and pressures to the vyield
£ joint efficiency criterion to predict an impending sample yield befo
0: offset angle potentially damaging expensive test samples.
y: radial sweep angle The general form of the von Mises yield criteriar &
o, principal stress triaxial stress state is shown in (1).
S, yield strength 5 ) )
a;,A,B,C,D,E: constants 28y" = (01 = 02)" + (0, — 03) (1)
v;. vector to calcuation points + (05— 01)*
II. ELLIPSE DEFINITION For thick wall cylinders, the principal stresses dze

) _ ~ shown to be represented by the Lamé hoop and rstoées
Cartesian stepping can be used to generate thd yiehquations [2,6] and axial stress. In the absendeentiing
ellipse but it leads to an unnecessary numberlotizions oy torsjon, yielding will always occur at the inmadius of
required to adequately represent the areas of @pidiure  the cylinder [2,8]. Therefore, the calculations che
needed for real time data checking. This problem igequced to one radial location on the sample. Tamd
illustrated by the square symbols along the cunvBig. 2.  equations can then be refactored and simplifiegims of

As the increment of loadT;, or pressuredp;, increases constants to be used to generate the von Misgselli
toward the outer edge of the ellipse it can be seansome

portion of the curve will be approximated by a igfhaline. A-  Internal Pressure and Axial Loading

The area of curvature after the last step for imeneting The Lamé thick wall cylinder equations for the tantal
load AT; is highlighted in Fig. 2. It requires a signifitan stress is represented, refactored and simplifietrims of
reduction in step size to represent the curvatbice.the the internal pressurp; while the external pressung, is
purposes of real time data checking, the resuljidd  held constant as shown in (2a-2c).

surface would be too conservative and alarming @oul

occur during normal test operations. a’p; — b*p,  a*b*(p; —p,) (2a)
Il = b2 —qa? r2(b2 — a?)
! oo boniiria a’r? + ap? (2b)
: 1 enclosed region of O'glr = [2—] Di
A6; Incremental Angle | 2 curvature r2(b%? — a?) . X
AT; Incremental Load : "': n [_pob (r*+a )]
P4 ! r2(b? —a?)
o P 1-
%5,’ \A 99:/ |: oplr = Ap; +C (2¢)
g ! & : : The same process can be done for the radial srass.
& = : : Lamé thick wall cylinder equation for the radiatests is
L i | represented, refactored and simplified in terms thof
vl internal pressurg; while the external pressugg is held
| ! constant as shown in (3a-3c).
7 1 !
Load (T) ol = a’p, —b’p,  a’b’(pi—p,)  (33)
rr b2 — a? r2(b2 — a?)
Figure 2. Cartesian and Radial Calculation Stepping
) o a’r? —a?b? (3b)
The_ ellipse can be transformed so that a radupipstg oyl = [m] pi
technique can be used. The algorithm produces itid y 2/ 2 2
surface with the requisite resolution to define tieas of n [_pob " —a )]
rapid curvature change with substantially less udaton r%2(b? — a?)
overhead. Fig. 2 illustrates the radial sweep polit;as
circle symbols along the curve. Because of thelutiso oyl = Dp; + E (3c)
improvement, interpolations can be made between
calculation data points to determine if a loA@ and The axial stress due to tension or compression is

pressuré\p window around the real time data is completelyindependent of pressure and represented and siedplif
inside of the test envelope, it overlaps the emelor it is  (4a-4Db).



_ T (4a)
% = en(b? — a?)
o, = BT (4b)

B. External Pressure and Axial Loading

The Lamé thick wall cylinder equations for the tantal
stress at any radial location is represented, t@fad and
simplified in terms of the external pressurg while the
internal pressurg; is held constant as shown in (5a-5c).

a’p; —b*p,  a*b*(p; — po,) (5a)
agly = b2 — g2 r2(b% — a?)
—b?r? — a?b? (5b)
aglr = 2= a7y Po
N p;a?(r? + b?)
72(b? — a?)
ogly = Apo +C (5¢)

The same process can be done for the radial sfrass.
Lamé thick wall cylinder equation for the radiatests is
represented, refactored and simplified in terms thof
external pressurg, while the internal pressung is held
constant as shown in (6a-6¢).

_a’p;—b’p,  a’b*(p; — p,) (6a)
ol = b2 —aqz r2(b2 — a?)
a’b? — r?p? pia®(r* —b*)| (6b)
0-T|T =l o~ pO + T 5710 N
r2(b2 — a?) r2(b% — a?)
0-T|T = DpO + E (GC)

The axial stresses due to tension or compressien a
represented and simplified the same as shown dlfda

C. Ellipse Definition in Conic Form

Substituting the above appropriate internal pressund
axial load equation set (2c,3c,4b) into the von édis
equation (1) using gives (7a-7b)

25,% = (05 = 02) + (94 — 07)? (7a)
+ (U‘r - 08)2
25,% = (Ap; + C — BT)? (7b)

+ (BT — Dp; — E)?

0 = (2B?) T? + 2(—AB — BD)Tp;
+ (24% + 2D? — 2AD)p;?
+ 2(-BC — BE)T
+ 2(2AC + 2DE — DC
—AE)p; + (2(C* + E?
—CE-S,%)

(8)

The vyield ellipse is now defined by the generalatipun
for conic sections [9] shown as (9a-9b)

O = alsz + 2(112Tpi + azzpiz + 2“137‘ (98.)
+ 2a53p; + @33
whereq;; is defined as
aij = @ji (9b)

Ill. ELLIPSE TRANSFORMATION

The ellipse is generated as shown in Fig. 3 byutating
the major axisz, the minor axish and radially calculating
the points based on the desired angular resolufotine
sweep anglg.

y
1

Figure 3. Ellipse u-v to x-y transformation

Fig. 3 also illustrates the transformation from theal
u-v ellipse coordinate system to the global x-yrdatate
system. Constants composed of the invariants [@Jired
for the transformation are defined in equationsa¢10c)

In order to change the form into one of a general

equation for conic sections [5], (7) can be refeadointo
the form of (8)

I = a1 +ay, (10a)
_ %11 a12| (10b)
2 a1 Ay
11 A2 g3 (10c)
[; =021 Qa2 Q23
31 A3z 0O33




The ellipse can then be generated with respedtetaitv
axes and appropriately rotated and
equations of the ellipse in terms of the u-v axegiven as
(11a-11c)

Biat? + Poav? + B3z =0 (11a)
wheref;,andp,, are defined as
| I\ (11b)
b =5 % |(7)
andps; is defined as
I3 (11c)

'333=I_

2

Magnitudes of the principal semi-axes and the tiwmac
to the principal axis can be calculated using (12&)
where the major axis is defined as

12a
s (122)
ﬁll
and the minor axis is defined as
12b
o B (<8
:322
and principle axis rotation angteis defined as
0 = ltan—1( 2ay; ) (12c)
2 a1 — Az
whereg is limited to
(12d)

(e
IA
N

The coordinates of the center point of the ellipse
given using (13a-13b) where the x axis oftsgtis defined
as

_ Q12003 — Q1303 (13a)
= — %
I
And the y axis offsey,, is defined as
_ %1213 ~ G123 (13b)

m 12

The parametric equation coordinates to a poinhénu-v

translated. Thalane are given using (14a-14b)

[u v]= [acosy bsiny] (14a)
where the sweep angfevaries as
0<y<2m (14b)

The final transformation into the x-y coordinatestgm
is given using (15a-15b)

£ %1 cos@ sin6 (15a)
e yil=u 17][—sin9 cos 6
The final transformed arrdy ¥ | is defined as
[ Y]=[Xm Ym]+[x" y] (15b)

The process is done to generate an ellipse fontbenal
pressure Lamé equation set with axial loads amget@rate
an ellipse for the external pressure Lamé equat@nwith
axial loads. The calculations are only performed tfoe
pressures corresponding to internal pressure ogrreadt
pressure with the respective equation set. Theetlijpse
halves are combined to represent the resultard wilipse
or test envelope.

IV. REAL TIME DATA VERIFICATION

The radial sweep ellipse generation technique fesva
resolution that can be used for interpolation wihl time
data. With the linear stepping illustrated in FR). the
location of maximum curvature can miss significant
portions of the yield envelope for reasonable dat@n
step sizesAT;. With a radial sweep\d; the calculated
ellipse points can be used to interpolate with &ebe
calculation resolution to determine if the real dirdata
checking window is completely inside, overlapping o
completely outside the test envelope. In practiee,
operating window around the real time data poinveisfied
as shown in Fig. 4.

Software precalculates the yield surface. For each
time load and pressure data point it checks the ¢omer
points of the incremental loatl" and pressurdP window.
The alarming criterion is based on a comparisorthef
magnitude of each given window corner point veenod
the magnitude of the collinear vector to the croggioint
of the segment created between the two adjaceiat data
points, pointspl and p2, as illustrated in Fig. 4 by the
diamond symbol. If during testing, the real timetada
alarming window overlaps the vyield surface the test
operator is given a warning. If the entire set edlrtime
data alarming window points are outside of the dyiel
surface, the test operator is presented an alat®a. sfThis



provides actionable real time information thatif§icllt to The interior angle between the segmeraind the vector
discern from only the load and pressure measurament v is shown a in Fig. 5 and is calculated in (17)

Real Time Data Point

o = cos (1712 +a? — v22> 17)

2v;a

Check Point

Ellipse Calculation
Points

The included angler is defined using the precalculated
angled, to thep1 vectorv; and to the respective collinear
vector defined by the incremental loA@ and pressuraP
window data point as shown in Fig. 5.

Pressure (P)

Pre-calculated Vectors a=Tm-— (p - (HC - 61) (18)

The magnitude of the yield ellipse approximatiowctoe

Load (T) v, can now be calculated as (19)
Figure 4. Real Time Data Checking 2 sing (19)
¢ sina

V. PRACTICAL IMPLEMENTATION

The practical implementation in software involves Once the magnitude of the yield ellipse approxiomati
precalculating the yield ellipse. The software canvectory, is calculated, it can be compared magnitude of the
precalculate the yield ellipse and retain the ca@s, the Vvector to the associated bounding check point ef réral
vector magnitude and the direction angle to theorefor ~ time data checking window.
each yield ellipse calculation point.

A series of quick geometry manipulations can be enad VI. ALGORITHM SUMMARY
based on the real time data checking window in
combination with the precalculated angles and ntagas
to the ellipse calculation points. With the eléppoints
calculated at a sufficient resolution, the locatioh the
crossing of the projected vectar, on the ellipse can A. Precalulated Steps (1-5)

The general procedure to implement the algorithm in
software involves a series of precalculated stepd a
series of iterative steps:

approximated using the assumption of a straighe lin 1. Obtain the sample parameters; inner radiys
segments,, between the two adjacent data poiptsand outer radius and yield strengtls,
p2. 2. Calculate the internal pressure portion of the

von Mises yield ellipse using the equation sets
outlined in the sectionl.A Internal Pressure
and Axial Loading

3. Calculate the external pressure portion of the
von Mises yield ellipse using the equation sets
outlined in the sectionl.B External Pressure
and Axial Loading

4. |Invert the external pressure calculated points
and combine them with the internal pressure
calculated points to create a single yield surface.

5. Calculate the magnitude and angle to each
ellipse point for the combined curve and retain
the values

B. lterative Steps (6-14)

6. Obtain the real time data point and determine
the four bounding checking window points.

7. For each of the check points, perform a radial
sweep through the ellipse and find the upper
and lower bounding angles for the angle to the
check point vector.

Pressure (P)

Figure 5 — Check vector magnitude

The magnitude of the segment bounded by the two
vectorsv; and v, is given by (16)

S12 = \/U12 + v, — 2v,v, cos(8, — ;) (16)
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